使用transformers 4.11.0进行GPT2-small 12层 模型的微调。

环境准备

https://huggingface.co/transformers/installation.html

这里采用源码方式安装

git clone https://github.com/huggingface/transformers.git
python setup.py install
pip install pytorch==1.6.0

数据准备

准备训练数据 和 验证数据,一行对应一条文本,这里使用txt文件后缀。文件样式如下。对应文件名为train_en.txt, valid_en.txt

I have a dream.
I have a dream.

开始训练

使用https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_clm.py

该脚本进行单机多卡训练。

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 run_clm.py \
    --model_name_or_path gpt2 \
    --train_file train_en.txt \
    --validation_file valid_en.txt \
    --do_train \
    --do_eval \
    --output_dir model \
    --overwrite_output_dir \
    --per_device_eval_batch_size 8 \
    --per_device_train_batch_size 6 \
    --num_train_epochs 10 \
    --save_steps 1000

per_device_train_batch_size,per_device_eval_batch_size,如果训练发生OOM,需要根据自己GPU的显存大小进行调整。

overwrite_output_dir每次执行是都是删除指定输出目录下的文件。

save_total_limit:采用此限制输出目录下的checkpoint个数。以防硬盘存储过大。默认为None

训练日志:

{'loss': 3.2526, 'learning_rate': 4.6367598982927716e-05, 'epoch': 0.73}
7%|▋ | 8000/110120 1:37:15<20:27:26, 1.39it/s 2021-09-16 19:04:04,838 >> Saving model checkpoint to model/checkpoint-8000
{'loss': 3.2327, 'learning_rate': 4.61405739193607e-05, 'epoch': 0.77}
{'loss': 3.2252, 'learning_rate': 4.591354885579368e-05, 'epoch': 0.82}
8%|▊ | 9000/110120 1:49:25<20:14:42, 1.39it/s 2021-09-16 19:16:14,990 >> Saving model checkpoint to model/checkpoint-9000
{'loss': 3.2139, 'learning_rate': 4.568652379222666e-05, 'epoch': 0.86}
{'loss': 3.2096, 'learning_rate': 4.545949872865964e-05, 'epoch': 0.91}
9%|▉ | 10000/110120 2:01:38<20:21:57, 1.37it/s 2021-09-16 19:28:27,348 >> Saving model checkpoint to model/checkpoint-10000

困惑度的计算

困惑度是交叉熵的指数形式。所以直接对模型输出loss进行math.exp(loss)就可以。

from transformers import GPT2Tokenizer, GPT2LMHeadModel
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
inputs = tokenizer("I have a dream", return_tensors="pt")
outputs = model(**inputs, labels=inputs["input_ids"])


loss = outputs.loss
torch.exp(loss) # 困惑度
# output: 68.56529998779297
End

本文标题:GPT2 领域数据微调

本文链接:http://tzer.top/archives/117.html

除非另有说明,本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议

声明:转载请注明文章来源。

最后修改:2021 年 09 月 17 日
如果觉得我的文章对你有用,请随意赞赏